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Using two measurement methods, pulse-echo ultrasound and resonance ultrasound spectroscopy, we mea-
sured the elastic constants of both monocrystal and polycrystal osmium between 5 and 300 K. Our measure-
ments help to resolve the current measurement-and-theory controversy concerning whether osmium’s bulk
modulus exceeds diamond’s. It does not at any temperature �for osmium, we find a zero-temperature bulk
modulus of 410 GPa and a 300 K value of 405 GPa, while diamond’s value being 442 GPa�. From the
zero-temperature elastic constants, we extract a Debye temperature of 477 K. From Grüneisen’s first rule, we
extract a Grüneisen parameter of 2.1, agreeing well with handbook values. Osmium shows near elastic aniso-
tropy and small elastic constant changes with temperature �for example, the bulk modulus increases only about
1.2% upon cooling through the studied temperature interval�. In all cases, the Cij�T� measurements agree well
with an Einstein-oscillator model. We consider especially the Poisson ratio, which is low and anisotropic
��12=0.242, �13=0.196� and suggests some covalent interatomic bonding, which may account for osmium’s
extreme high hardness and the departure of the 5d elements from Friedel’s parabolic bulk-modulus/atomic-
number model.
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I. INTRODUCTION

Osmium’s monocrystal elastic constants provide much in-
terest for many varied reasons: �1� among the 30 d-electron
transition metals, we lack monocrystal elastic constants for
only two: La and Os. This lack is especially surprising be-
cause Os shows the highest hardness of any metallic ele-
ment, much current research proceeds on hardness, and hard-
ness connects strongly with the elastic constants.1 �2� In
recent years, several studies, both measurement and theory,
suggested that for osmium the principal elastic constant, the
bulk modulus, actually exceeds diamond’s, disputing the
long-held concept that diamond represents nature’s stiffest
material. Osmium reported bulk modulus from different
high-pressure studies ranging from 390 to 467 GPa, the ac-
cepted value for diamond being 442 GPa. To the best of our
knowledge, the only available theoretical calculations are by
Fast et al.,2 Fan et al.,3 and Minisini et al.4 �3� From accurate
zero-temperature elastic constants, one obtains the most reli-
able Debye temperature,5 which relates to many mechanical-
physical properties.6,7

Osmium is a 5d-transition element, a group that, along
with 4d-transition elements, stands out in hardness, being
harder than most elements in Mendeleev’s table �see, for
example, Fig. 1 in Ref. 8�. Osmium crystallizes in an hcp
crystal structure, which has a denser atomic packing than any
other crystal structure, including fcc. �Diamond’s crystal
structure consists of four interpenetrating fcc lattices.� Dia-
mond’s higher hardness results from its covalent interatomic
bonding7 versus osmium’s mainly metallic bonding. Hexago-
nal lattices are characterized by an isotropic close-packed
plane and five independent elastic constants, usually taken to
be the Voigt coefficients: C11, C12, C13, C33, and C44.

Because resonant ultrasound spectroscopy �RUS� mea-
surements on isotropic polycrystalline samples can only

yield two independent elastic constants, we also measured
osmium’s five independent elastic constants between 300 and
5 K using RUS �Refs. 9–12� on high-quality monocrystalline
specimens. RUS is a technique where one acoustic trans-
ducer drives the specimen while frequency is swept; peaks in
the response of a second transducer determine the mechani-
cal resonances, which are then analyzed to determine the full
elastic tensor of the specimen under investigation. The RUS
results were confirmed by pulse-echo ultrasound measure-
ments at room temperature and the bulk modulus, absent
complications, which is expected to be the same for monoc-
rystal and polycrystal materials was indeed the same within
experimental errors.

II. MEASUREMENTS

We obtained oriented monocrystals from Accumet Mate-
rials Co., Briarcliff Manor, New York. Polycrystalline shots
of 40 mesh were obtained from Alfa Products, Thiokol/
Ventron Division, Danvers, Massachusetts. We measured a
total of four specimens: two monocrystals and two polycrys-
tals, with sizes of 1–2 mm on one side. All specimens were
polished to obtain flat and parallel faces, with sharp 90°
edges. We corrected for osmium’s thermal expansion follow-
ing Ref. 13.

Typical pulse-echo measurements determine the two-way
travel time of sound in a specimen of known length. The
quality of the received signal depends strongly on the flat-
ness and parallelism of the two faces perpendicular to the
wave-propagation direction. We used an all-digital ultrasonic
pulse-echo-overlap method; details appear in Ref. 14. The
transducers used for the pulse-echo experiments were ac-
quired from Boston Piezo-Optics Bellingham, Massachu-
setts, USA. For compressional mode we used a 40 MHz, 36°
Y-cut �P wave� LiNbO3 transducer, while for shear mode we
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used a 40 MHz, 41° X-cut �S wave� LiNbO3 transducer. Both
were disk shaped, 3.2 mm diameter, overtone polished, with
sputtered Cr/Au electrodes on both sides.

There are several advantages that led us to use RUS as the
main method for determining osmium’s full elastic tensor: �i�
the elastic constants can be determined accurately over a
large temperature interval; �ii� the full tensor at given condi-
tions of temperature can be determined from a single mea-
surement on the same crystal; relative errors between moduli
introduced by variation in crystal homogeneity, shape, orien-
tation, and size are completely eliminated; �iii� unlike x-ray
determination of the bulk modulus at high pressure, there is
no need to ensure hydrostatic conditions because the speci-
mens are measured at ambient pressure. Consequently, the
extra variable, i.e., pressure, which can introduce additional
errors in measurements is eliminated. Most of the previously
reported bulk-modulus values are highly scattered between
390 and 467 GPa, depending on how the hydrostaticity was
maintained as the pressure was increased during the mea-
surement. Also, the scatter in x-ray measurements �d spac-
ings� at different pressures accommodates the use of differ-
ent B� �first derivative of the bulk modulus with respect to
pressure� values in the equation of state, with no �or very
small� change in the quality of the fit. These complications
present in a high-pressure experiment can introduce errors in
the measured values of the elastic constants and are absent
with RUS.

The determination of specimen dimensions is a primary
factor in the absolute errors of elastic moduli computed from
measured quantities in both techniques we used. Corrections
for thermal expansion were taken into account based on
x-ray diffraction measurements between 77 and 300 K by
Finkel’ et al.15 We extrapolated their results to 0 K to cover
the temperature region of our measurements. The mass den-
sity was corrected to 22.61 g /cm3.16

III. RESULTS

A. Polycrystalline osmium

Polycrystalline materials show only two independent elas-
tic constants �for example, C11 and C44�, assuming elastic
isotropy. Any significant anisotropy would cause our inverse
calculation �from frequencies to Cij� to fail. Two indepen-
dently cut and polished polycrystalline specimens were used
to determine C11 and C44.

The good agreement between RUS room-temperature re-
sults on two specimens leads us to the determination of Cij’s
versus temperature for only one polycrystalline specimen.
C12 was determined from the following relationship �a state-
ment of elastic quasi-isotropy� in the polycrystal:

C44 =
C11 – C12

2
. �1�

1. RUS results for polycrystalline osmium

Results at room temperature and the extrapolated values
at 0 K are summarized in Table I. Figure 1 shows the fit of

the C11, C44 and bulk modulus �B=C11− �4 /3�C44� to an
Einstein-oscillator model,17

Cij = Cij
0 −

s

et/T − 1
. �2a�

Here, s is given by the high-temperature near-linear
derivative,18

TABLE I. Osmium’s measured polycrystalline elastic constants
at 300 K and extrapolation to 0 K.

Specimen
T

�K�
C11

�GPa�
C12

�GPa�
C44

�GPa�

P1 300 755.7 230.0 262.8

P2 300 762.2 229.4 266.4

Average 300 758.9 229.7 264.6

P1 0 776.8 234.8 271.1

FIG. 1. Polycrystalline-osmium elastic-constant dependence on
temperature and their fit to Eq. �2a� derived based on an Einstein
oscillator.
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�Cij

�T
= −

s

t
=

− 3k��� + 1�
Va

, �2b�

where Cij represents an elastic constant at temperature T, Cij
0

represents an elastic constant at 0 K, t relates to the Einstein
temperature, k denotes the Boltzmann constant, � denotes the
Grüneisen parameter, Va denotes the atomic volume, and s
denotes a free parameter. Parameter t is the Einstein tempera-
ture. Ledbetter18 showed later that the parameter s relates to
the zero-point-vibration-energy contribution to the elastic
stiffness. Equation �2a� was successfully applied to more
than 20 materials by Varshni17 and by us to ZrW2O8 �Ref.
19� and diamond.20 As shown elegantly by Leibfried and
Ludwig,21 the elastic-stiffness temperature dependence can
be described using the derivative of any function that de-
scribes the internal-energy temperature dependence. �In Ref.
21, see especially their Eqs. �8.16�, �13.2�, �14.12�, �14.13b�,
and �15.10�.� We chose the Einstein function because of its
familiarity, analytic simplicity, ease of use, and its excellent
agreement with observation. That we used the Debye func-
tion to estimate the Debye characteristic temperature from
the zero-temperature elastic-stiffness coefficients Cijkl should
cause no confusion. We used the Einstein function to ex-
trapolate to the zero-temperature Cijkl. Choosing from any
other function would yield the same results especially be-
cause C�T� shows an especially small slope near zero tem-
perature because of thermodynamics’ third law. Wachtman et
al.22 and Varshni17 considered the C�T� problem for several
functions. Ledbetter6 gave a simple review of C�T� that in-
cludes references to contributions by Born, Brillouin, and
many others.

The fitting parameters for the polycrystalline elastic con-
stants appear in Table II, while Table III shows the polycrys-
talline elastic constants and Debye temperatures: bulk-
modulus B, shear modulus G=C44, Young’s modulus E,
Poisson ratio �, and Debye temperature �D. Equations for
these appear just below. The Debye temperatures were cal-
culated from the elastic constants and the atomic volume
according to Ref. 23,

B =
C11 + 2C12

3
, �3�

G = C44, �4�

E =
9BG

3B + G
, �5�

� =
1

2

3B − 2G

3B + 2G
. �6�

2. Pulse-echo results for polycrystalline osmium

From the measured sound speeds vk, the elastic constants
are calculated as follows:

Cij = �vk
2. �7�

Here Cij denotes the elastic constant for the combination of
propagation direction and polarization, � denotes the mass
density, and vk denote the sound speeds. The following elas-
tic constants were determined for the polycrystalline speci-
mens: C11 �compressional mode or P wave� and C44 �shear
mode or S wave�. Sound speed, elastic constants, and Pois-
son ratio determined experimentally and/or calculated appear
in Table IV. The small differences between the values ob-
tained from RUS and pulse echo can be explained as fol-
lows: for a polycrystalline specimen, the pulse-echo method
requires two independent measurements of the sound speed
in the same propagation direction, using two different polar-
izations �P wave and S wave�, with the two different trans-
ducers mounted individually on the specimen, leading to
small errors introduced by imperfect parallelism and
specimen—bond thickness variation. RUS requires only one
measurement: a frequency sweep, which reveals the speci-
men’s macroscopic mechanical resonances. Also, for RUS
there is no transducer bond. The first 40 resonances were
used to obtain the elastic constants. The pulse-echo method
is a good starting point for determining the Cij’s, but RUS
should be used for more precise measurements.

B. Monocrystalline osmium

Hexagonal-symmetry monocrystals show five indepen-
dent elastic constants �C11, C12, C13, C33, and C44�. Two in-

TABLE II. Cij fitting parameters to Eq. �2a� for polycrystalline
osmium.

Elastic constant
Cij

0

�GPa�
s

�GPa�
t

�K�

C11 776.8 24.8 233.0

C44 271.1 7.0 182.5

B 415.4 16.6 290.8

TABLE III. Elastic constants and Debye temperatures calculated
from the Cij’s of polycrystalline osmium.

T
�K�

B
�GPa�

G
�GPa�

E
�GPa� �

�D

�K�

300 405.2 262.9 648.4 0.233 �467�
0 415.4 271.0 667.8 0.232 474

TABLE IV. Pulse-echo experimental values for an osmium polycrystalline specimen at 300 K.

vL

�km/s�
vS

�km/s�
C11

�GPa�
C12

�GPa�
C44

�GPa�
B

�GPa�
G

�GPa�
E

�GPa� �

5.747 3.425 746.7 216.3 265.2 393.1 265.2 649.6 0.190
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dependently cut and polished monocrystalline specimens
were used to determine the above five elastic constants. Be-
cause it has more physical meaning �shear on the x1 plane in
the x2 direction� than C12 or C13, we also show the value of
C66 determined from the hexagonal-symmetry relationship,

C66 =
C11 – C12

2
. �8�

1. RUS results for monocrystalline osmium

The measured Cij’s for the monocrystalline specimens at
300 and 0 K are summarized in Table V. The rms error
between measured frequencies and fitted frequencies was
0.1–0.2 % at all temperatures. The difference in elastic con-
stants between the two monocrystals �independently oriented
and polished� is less than 1%, with the exception of C13,
which shows a slightly higher uncertainty. Note that no
sound propagation speed depends solely on C13; C13 always
occurs in combination with much higher moduli and mostly
with negative sign so the error in any sound speed is much
less than the error in C13 and the temperature dependence is

usually opposite to that of diagonal moduli. Henceforth, we
focus on the second monocrystalline specimen while noting
that all our observations are consistent with the first monoc-
rystalline specimen.

The normalized elastic constants, Cij�T� /Cij�300 K�, de-
pendences on temperature between 300 and 5 K, are shown
in Fig. 2. Different elastic constants at selected temperatures
are given in Table VI.

Figure 3 shows the fit of selected results to an Einstein-
oscillator model.17 The fitting parameters for selected elastic
constants are given in Table VII.

The average-over-direction effective elastic constants
were calculated from the monocrystalline elastic constants
according to Ref. 23, for a hexagonal-symmetry crystal, and
are shown in Table VIII.

2. Pulse-echo results for monocrystalline osmium

Using a pulse-echo method, four of the five independent
elastic constants were determined, according to Table IX �see
Ref. 24�. Because of the good agreement between the results
obtained with the two methods �RUS and pulse echo� and the

TABLE V. Osmium’s monocrystalline elastic moduli at a temperature of 300 K and extrapolation to 0
K.

Specimen
T

�K�
C11

�GPa�
C12

�GPa�
C13

�GPa�
C33

�GPa�
C44

�GPa�
C66

�GPa�

S1 300 747.5 229.0 216.1 816.7 259.2 259.3

S2 300 751.6 230.8 219.6 823.1 259.2 260.4

Average 300 749.5 229.9 217.8 819.9 259.2 259.9

S1 0 761.7 227.4 217.1 840.1 269.1 267.0

S2 0 765.0 228.4 219.0 846.2 269.5 268.3

Average 0 763.3 227.9 218.0 843.2 269.3 267.7

FIG. 2. Osmium’s normalized elastic con-
stants versus temperature. Note small changes for
all the elastic constants, with larger changes in
shear modes than longitudinal modes.
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observation that RUS values are intrinsically expected to be
more accurate, the C13 value was not determined using the
pulse-echo method. The main obstacle is related to cutting
one of the osmium specimens to the correct orientation �45°
to the c axis�, given the safety and/or health-related issues
that can arise with osmium dust. The room-temperature
pulse-echo values for the sound speeds and elastic constants
are given in Table X.

IV. DISCUSSION

Of the 92 natural elements, 70 are metals at ambient con-
ditions. Among these 70, osmium stands out by showing
many remarkable properties: highest hardness, lowest com-
pressibility, highest cohesive energy �after tungsten�, highest
melting point �after tungsten�, and lowest thermal expansiv-
ity. As we describe below, osmium shows numerous unusual
elastic properties; some are unusual in fitting so closely to
ideal simple models. In discussing osmium’s elastic proper-
ties, we shall use occasionally the concept of unsaturated
covalent bond �versus the famous saturated covalent bond in
diamond where each bond contains two bonding electrons�.
In terms of the transition metals, Pettifor25 commented most
thoroughly on the bonding issue: “The transition metals are
not describable by the conventional nearly free-electron
model of the metallic bond since their valence electrons re-
main relatively tightly bound to their parent atoms, forming
unsaturated covalent bonds with their neighbors. These d
bonds are responsible for the structural and cohesive proper-
ties of the transition metals.” Indeed, Pettifor, in his Chap. 7,
combined the basic theoretical analysis of bonding in transi-
tion metals with bonding in semiconductors. Finally, we
should note that osmium is not only unusual mechanically
and physically but also chemically; along with ruthenium,
osmium is the only element to show all eight oxidation states

from +1 through +8, thus enabling a plethora of chemical
compounds.

For polycrystalline osmium �Fig. 1�, elastic constants
change relatively smoothly with temperature, and they are fit
well with an Einstein-oscillator model, implying the absence
of any significant phase transitions. We associate the small
scatter in C11 and bulk-modulus B with measurement errors.
The change in elastic constants with temperature is small,
about 2–3 %, which is expected for a stiff material with high
Debye temperature.

Monocrystalline Os shows also smooth behavior with
temperature �Fig. 2�. The change in the diagonal elastic con-
stants is also small �2–4 %�. The off-diagonal terms, C12 and
C13, show unusual behavior �positive slopes with −0.3% to
−1% change�, suggesting subtle electronic changes. A closer
look �Fig. 3� shows a small deviation around 200 K for some
elastic constants. Oscillations in elastic constants were ob-
served previously in cubic-symmetry materials such as Ta,
W, Mo, Nb, V, Fe, Pd, Ni, Cu,26 and Pt.27 It was argued that
the deviations in elastic constants versus temperature arise
because these metals go through antiferromagnetic ordering
and/or anomalies in thermal expansion.26 However, the re-
sults obtained from thermal expansion, magnetic susceptibil-
ity, and specific heat are contradictory, and definite conclu-
sions cannot be drawn. For Pd it was suggested28 that the
nonsmoothness is caused by contributions of the unfilled d
band to the elastic constants. Because no abnormal behavior
appeared in thermal expansion13 or in specific heat,29 most
likely the small deviations of Cij’s with temperature arise
from small measurement uncertainties introduced by the ex-
perimental setup used for cooling or heating.

Agreement between monocrystal-polycrystal measure-
ments and monocrystal measurements obtained by two dif-
ferent methods seems quite good. For the monocrystalline
osmium the average percentage differences between RUS

TABLE VI. Cij’s for osmium at selected temperatures.

T
�K�

C11

�GPa�
C12

�GPa�
C13

�GPa�
C33

�GPa�
C44

�GPa�
C66

�GPa�
B

�GPa�
G

�GPa�

301.19 751.54 230.81 219.48 822.85 259.08 260.36 406.81 265.48

282.15 752.67 230.65 219.59 825.20 260.01 261.01 407.32 266.29

260.38 753.90 230.30 219.56 827.75 261.14 261.80 407.76 267.25

243.47 754.67 229.85 219.45 829.83 262.17 262.41 407.99 268.07

221.33 755.84 229.40 219.47 832.64 263.41 263.22 408.44 269.10

199.86 757.10 229.16 219.58 835.10 264.45 263.97 408.96 270.00

178.96 758.26 229.03 219.50 837.00 265.29 264.62 409.36 270.76

158.83 759.34 228.86 219.44 838.68 266.06 265.24 409.71 271.47

139.29 760.45 228.77 219.40 840.26 266.77 265.84 410.08 272.13

120.42 761.42 228.64 219.34 841.75 267.46 266.39 410.40 272.76

101.94 762.43 228.61 219.32 843.10 268.08 266.91 410.76 273.34

79.98 763.53 228.62 219.29 844.46 268.70 267.46 411.14 273.94

61.13 764.21 228.52 219.15 845.36 269.12 267.84 411.30 274.36

40.78 764.74 228.48 219.13 846.09 269.44 268.13 411.48 274.67

19.01 764.98 228.42 219.14 846.30 269.56 268.28 411.54 274.79

5.21 765.09 228.49 219.17 846.38 269.55 268.30 411.61 274.80
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and pulse-echo-method values are as follow: �C11� −2%,
�C12� −8%, C13 is not determined with pulse-echo method,
�C33� −1%, �C44� +1%, and �C66� +0.4%. For the polycrys-
talline osmium the differences are as follow: �C11� −2%,
�C12� −6%, and �C44� �1%. In both cases, all but the off-
diagonal terms are within �2%. As mentioned above, RUS
provides more reliable results. More than that the monocrys-
talline specimen has many advantages over a polycrystal:
higher purity, fewer defects, texture absence, and so on.

We now compare our measurements with ab initio theo-
retical calculations �Table XI�. Fast et al.2 used first-
principles electronic-structure calculations using the full-
potential linear muffin-tin orbital method. Fan et al.3 used the
ultrasoft pseudopotential to describe the interaction between
ions and electrons. To describe the exchange and correlation
potentials, they used the local-density approximation �LDA�
and the generalized gradient approximation �GGA�. More
recently, Minisini et al.4 performed similar calculations but
using a projector augmented-wave �PAW� potential for
electron-ion interactions. The theoretical values by Fast et al.
overestimate the Cij’s by 9–21 % ��C11� +17%, �C12� +9%,
�C13� +13%, �C33� +21%, and �C66� +21%�, except for C44,
which is −40% lower than our measurement. Calculations of
Minisini et al. agree better with our measurements. The per-
centage differences between averaged LDA and GGA theo-
retical values and experimental data are �C11� −2%, �C12�
+28%, �C13� +1%, �C33� +8%, �C44� +3%, and �C66� −14%.
The best agreement between theoretical and experimental
values are the calculations by Fan et al. with �C11� +0.8%,
�C12� −0.5%, �C13� +13.6%, �C33� 0.0%, �C44� −4%, and
�C66� +1.4%. However, the value for C13 is overestimated by
13.6% and, as pointed by Minisini et al., C13	C12 contra-
dicts observation. More advanced theoretical calculations are
needed to reconcile the measurement-theory discrepancies
and to help understand better osmium’s electronic and struc-
tural properties. None of the calculations seems to include
Pettifor’s admonishment that in transition metals unsaturated
covalent bonds control interatomic bonding.25 Some further
theory-measurement comparisons occur in our study devoted
entirely to the bulk modulus.30

Our measurements not only determined osmium’s elastic
constants at 0 K, which are essential for checking ab initio
theories, but they also determined the Cij’s temperature de-
pendencies, essential information for checking equations of
state and calculations done by methods such as the
embedded-atom model.

Although the bulk-modulus �B� for osmium is relatively
close to that of diamond �407 and 442 GPa, respectively�, its
shear modulus �G� is about a half of diamond’s �265.6 GPa
versus 537.4 GPa�.23 Many �probably most� studies assume
that the bulk modulus relates to hardness. Actually, the shear
modulus provides a better hardness indicator.1,7 Hardness de-
pends on dislocation mobility, which in turn depends on the
shear modulus G.7 Osmium’s B /G ratio is high �1.5�, almost
twice than that of diamond �0.8�. �A more detailed discussion

TABLE VII. Parameters from fitting the measurements to Eq.
�2a�.

Elastic constant
Cij

0

�GPa�
s

�GPa�
t

�K�

C11 765.0 8.3 144.1

C33 846.2 32.7 264.8

C44 269.5 11.8 228.8

C66 268.3 5.8 165.3

B 411.5 3.8 180.3

G 274.8 8.6 197.5

FIG. 3. Selected elastic constants for osmium and their fit to Eq.
�2a� based on an Einstein-oscillator model.
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of osmium’s bulk modulus appears in Ref. 30.� Gilman31

considered the G /B ratio for ten face-centered-cubic metals
and found a surprising result that lacks theoretical basis. Gil-
man observed that as G /B increases these metals move
closer to satisfying the Cauchy condition. Indeed, iridium
showed the highest G /B, which fell beyond the Cauchy
boundary, and thus showed a “negative Cauchy pressure,”
which is now the focus of many theoretical studies. Gilman
concluded that although the crystal structure is simple, the
various electron distributions are not so simple, connecting
perhaps with Pettifor’s unsaturated covalent bond mentioned
above. Ledbetter extended Gilman’s study to include 23 cu-
bic elements and found eight elements with negative Cauchy
pressures.32 At least for cubic crystals, most simple models
predict positive Cauchy pressure. The cubic-symmetry
Cauchy condition is C12=C44. Showing hexagonal
�transverse-isotropic� symmetry, osmium possesses two
Cauchy conditions: C13=C44 and C11=3C12 �equivalently,
C12=C66�. Figure 4 shows the temperature variation in the
two Cauchy ratios. Both ratios increase with increasing tem-
perature, tending toward unity at some much higher tempera-
ture. The Cauchy discrepancies, usually attributed to many-
body forces,33 are fairly large at the lowest temperatures. For
a central-force near-neighbor-only model of hexagonal lat-
tices, Born and Huang34 derived elastic-constant ratios:
C33:C11:C12:C13:C44:C66=32:29:11:8 :8 :9. Beside the
central-force and near-neighbor-only departures, Born and
Huang took departures from these ratios to reflect internal
strains within the hexagonal unit cell. For osmium, these
ratios are 32:29:9:8:10:10, reasonably close to the Born-
Huang simple model predictions but clearly the small differ-
ences are assumed important, as in the Cauchy relationships

and in other properties discussed below. In predicting C33
	C11, the Born-Huang model implies an axial ratio less than
the ideal value: 1.633. Osmium shows c /a=1.5790. Thus,
the closest-packed atoms occur in pairs out of the basal plane
rather than in the basal plane, the respective spacings being
2.6754 and 2.7353, and the handbook covalent-bond spacing
being slightly lower, 2.56 Å.

Following the idea of Köster and Franz35 that the Poisson
ratio reveals more about interatomic bonding than any other
single elastic constant, we now focus on osmium’s aniso-
tropic Poisson ratio. First, we consider osmium’s macro-
scopic �averaged over all directions� Poisson ratio, 0.232,
which is lowest among the 30 3d-4d-5d elements, except for
Cr �0.212�, which possesses magnetic properties that blur the
comparison. We argue that low Poisson ratios suggest cova-
lent bonding, as confirmed by the following summary for
various element groups in Mendeleev’s table:

Noble metals �5� �=0.383�0.030

Alkali metals �5� 0.359�0.007

Poor metals �10� 0.351�0.087

bcc metals �15� 0.327�0.058

fcc metals �17� 0.325�0.056

Alkaline earths �5� 0.291�0.041

3d transition �10� 0.290�0.049

4d transition �10� 0.315�0.055

5d transition �10� 0.314�0.064

Inert-gas solids �5� 0.297�0.050

Covalent solids �4� 0.167�0.084

The argument becomes more convincing if we examine the
Poisson-ratio “tensor,” which is defined as follows:

�ij = −
Sij

Sii
. �9�

Here Sij denote the tensor-inverse components of the Cij, i
denotes the stress direction, and j denotes a direction
transverse to i. Hexagonal crystals show three principal
independent �ij: �12, �13, and �31. Figure 5 shows the �ij
temperature dependence together with Einstein-oscillator-
model best-fit curves. These values are low at zero
temperature, that is, 0.196, 0.220, and 0.243, much below the

TABLE VIII. Average-over-direction �effective polycrystal� elastic constants and derived quantities cal-
culated from the Cij’s: B—bulk modulus, G—shear modulus, E—Young modulus, �—Poisson ratio,
�D—Debye temperature, and A—anisotropy.

Specimen
T

�K�
B

�GPa�
G

�GPa�
E

�GPa� �
�D

�K� A

S1 300 403.4 265.0 652.1 0.231 �469� 1.090

S2 300 406.9 265.5 654.3 0.232 �469� 1.093

Average 300 405.1 265.3 653.2 0.231 �469� 1.092

S1 0 409.1 273.9 671.7 0.226 476 1.090

S2 0 411.5 274.8 674.3 0.227 477 1.090

Average 0 410.3 274.3 673.0 0.227 477 1.090

TABLE IX. Cij determination procedure using the pulse-echo
method.

Propagation
mode

Propagation
direction

Polarization
direction Cij

Longitudinal � to c axis C11

Longitudinal � to c axis C33

Transverse � to c axis Any C44

Transverse � to c axis � to c axis C66= 1
2 �C11–C12�
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average for any of the ten material groups shown above.
They argue strongly for covalency, especially along the
hexagonal axis x3, the crystal’s stiffest direction.

Although the Poison ratio �a ratio of elastic compliances�
shows moderate anisotropy, osmium’s Cij themselves do not.
Indeed, osmium may be the most nearly isotropic element in
our experience. The average-over-direction shear-mode an-
isotropy A at 300 K is 1.093, perfect isotropy being A
=1.000. �Among the elements, 
 Pu shows the highest
known elastic anisotropy: 7.03.� Comparing the anisotropy
values for 3d-4d-5d hexagonal elements adjacent to osmium,
clearly, osmium is most nearly isotropic �Co being 1.49, Re
being 1.37, and Ru being 1.17�. Osmium shows nearly no
shear anisotropy: C44 /C66=0.995, the relative resistance to
shear on the hexagonal basal plane and the prismatic plane,
respectively. This near elastic isotropy is surprising because
in a nearly free-electron model, as emphasized by Pettifor,25

some electrons remain near the ion core and retain some of
their atomic character. Osmium’s atomic electronic
structure—�Xe�4f145d66s2—reveals the key role of d elec-
trons, whose radial-distribution functions consist of highly
anisotropic clover-leaf lobes, which one hardly expects to
permit near elastic isotropy.

Because the Debye temperature �D connects with so
many physical properties, one can estimate it in various
ways, the most common being specific heat. However, in an
extensive review of various measurement methods,
Herbstein5 concluded that the preferred method is to measure
the elastic constants, especially at low temperature. We used

our elastic-constant results to calculate osmium’s �D by a
simple method described elsewhere.5 We obtained �D
=477�2 K.36 Our result settled a long-standing controversy
where 20 reported values averaged 411�2 K and ranged
from 250 to 500 K. Our result shows consistency with
known �D values for adjacent elements in Mendeleev’s
table. Osmium’s Debye temperature exceeds that of all 30
transition metals except Cr and Ru.

We turn now from the quintessential harmonic parameter,
the Debye temperature, to the quintessential anharmonic pa-
rameter, the Grüneisen parameter �. Using ambient tempera-
ture results for the bulk modulus, the Grüneisen’s first rule,
and the lattice specific heat, we can calculate the Grüneisen
parameter � as follows:

� = �
BVa

Cp
. �10�

Here � denotes the volume thermal expansivity, Va denotes
the unit-cell volume, and Cp denotes the heat capacity. For
these properties we took �=15.3�10−6 K−1, Va
=13.9928 Å3, and Cp=24.72 J K−1 mol−1.

Solving Eq. �10� gives �=2.12, in good agreement with
Gschneidner’s value of 2.02.37 A recent Raman-scattering
high-pressure study yielded a mode-Grüneisen parameter of
1.77�12�.38 The extensive review by Gschneidner gives aver-
age values of 2.46�0.46 for fcc elements, 1.93�0.42 for
close-packed hexagonal �cph� elements, 1.39�0.34 for five

TABLE X. Pulse-echo measurements for a monocrystalline specimen at 300 K.

C11

�GPa�
C12

�GPa�
C13

�GPa�
C33

�GPa�
C44

�GPa�
C66

�GPa�

734.1 212.4 809.0 262.6 260.8

Associated sound speed �km/s�
5.698 N/Aa 5.982 3.408 3.396

aC12 lacks an associated sound speed. It was determined from C11 and C66.

TABLE XI. Osmium’s Cij’s. Theory-measurement comparisons.

Source
C11

�GPa�
C12

�GPa�
C13

�GPa�
C33

�GPa�
C44

�GPa�
C66

�GPa�

Fast 894.5 249.2 245.6 1016.4 162.2 322.6

Fan LDA 808.7 243.7 264.7 888.6 271.2 282.5

Fan GGA 730.1 209.8 230.5 798.3 246.9 260.2

Fan avg 769.4 226.8 247.6 843.5 259.1 271.4

Minisini LDA 789 308 239 958 289 240

Minisini GGA 715 274 202 870 265 220

Minisini avg 752 291 220 914 277 230

Expt., present, 0 K 763.3 227.9 218.0 843.2 269.3 267.7
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alkali metals, and 1.67�0.12 for the remaining bcc metals.37

Thus, we see that osmium’s Grüneisen parameter is about
average or very slightly higher.

Solving Eq. �2b� for the Grüneisen parameter gives �
=2.22. We can also compare these values with the Grüneisen
parameter obtained from the measured dB /dP using the ap-
proximate relationship dB /dP=2�+1. The only data avail-
able for dB /dP are from x-ray determination of the bulk
modulus from the equation of state: 2.1–5.5, which gives �
=0.55–2.25.

Finally, we point out that our finding that osmium’s bulk
modulus exceeds rhenium’s indicates some small deficiency
in Friedel’s popular rectangular-d-band tight-binding model
for the transition elements.39,40 Friedel’s model predicts that
the bulk modulus shows symmetrical parabolic behavior
across a 3d, 4d, or 5d ten-element series. For the 5d series,
Friedel predicts rhenium at the apex, whereas we find os-
mium. Similar difficulties appear in the 3d and 4d series. A
possible solution to this problem is to somehow add unsat-
urated covalent bonds to the theory.

V. CONCLUSIONS

�1� At all studied temperatures, osmium’s bulk modulus
fails to exceed diamond’s, contrary to several previous mea-
surements and ab initio theoretical calculations.

�2� Osmium’s bulk modulus exceeds that of all other met-
als �412 GPa at 0 K and 407 GPa at 300 K�.

�3� All the elastic constants change smoothly with tem-
perature, fitting well to an Einstein-oscillator model of the
Cij�T�.

�4� From the low-temperature Cij, we extracted a Debye
temperature �D of 477�2 K, highest among the 30 transi-
tion metals except for Cr and Ru.

�5� From Grüneisen’s first rule, we extracted a Grüneisen
parameter � of 2.12, a moderate value agreeing with hand-
book values.

�6� Osmium’s elastic-stiffness coefficients, the Cij’s, show
remarkably low elastic anisotropy, showing anisotropy val-
ues near unity for all the usual anisotropy measures.

�7� Osmium’s Poisson ratio shows several remarkable fea-
tures: �i� the lowest average-over-direction value �0.232�
among the 30 transition elements; �ii� an especially low out-
of-basal-plane value, �13=0.196; and �iii� considerable aniso-
tropy from 0.196 to 0.243.

�8� Showing a bulk modulus higher than rhenium’s goes
against Friedel’s long-standing tight-binding transition-metal
theory.

�9� Several observations support unsaturated covalent
bonds in osmium, especially out of the basal plane. These
factors include the following: �i� very high bulk modulus,
only slightly lower than diamond’s, the prototype covalent
element; �ii� very low Poisson ratio, both overall and espe-
cially in some directions, typical of covalent materials and
atypical of metals; �iii� departure from Friedel’s tight-binding
transition-metal theory, which predicts a too-low value for
osmium’s bulk modulus; and �iv� small elastic-constant
changes with temperature.

FIG. 4. Temperature variation in two Cauchy ratios C12 /C66 and
C12 /C44. If interatomic forces were purely central, these ratios
would be equal to 1.000. Their departure from unity is usually
ascribed to many-body forces.

FIG. 5. Temperature variation in the three principal Poison ra-
tios. Slater’s argument for positive d� /dT slopes is that warming
pushes metals toward the liquid state where �=0.5. The exception-
ally low values suggest some covalent bonding. The lowest value,
for �13, suggests that covalent bonds occur out of the basal plane.
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